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Abstract. We study the phase transition in theU(1) lattice gauge theory using the Wilson–
Polyakov line as the order parameter. The Wilson–Polyakov line remains very small at strong
coupling and becomes non-zero at weak coupling, signalling a confinement-to-deconfinement phase
transition. The decondensation of monopole loops is responsible for this phase transition. A finite
size scaling analysis of the susceptibility of the Wilson line gives a ratio forγ /ν which is quite
close to the corresponding value in the three-dimensional planar model. A scaling behaviour of
the monopole loop distribution function is also established at the point of the second-order phase
transition. A measurement of the plaquette susceptibility at the transition point shows that it does
not scale with the four-dimensional volume as is expected of a first-order bulk transition.

1. Introduction

Lattice gauge theories (LGTs) at non-zero temperatures have been the focus of many
investigations in recent years. Their study enables us to make non-perturbative predictions for
the high-temperature properties of gauge theories. LGTs are expected to clarify many issues
about finite-temperature gauge theories: the nature of the high-temperature phase, the order
of the phase transition, and the relevant elementary excitations at high temperatures. The
pioneering work in [1] was the first non-perturbative demonstration that quarks are deconfined
at high temperatures. This calculation is done in the strong coupling limit of theSU(2)
LGT. Early Monte Carlo simulations [2] provided further support for the existence of this
phase transition. Since then, there have been many studies of the thermodynamic properties
of theSU(2) and theSU(3) LGTs [3] which have provided valuable insights into the high-
temperature behaviour of gauge theories.

For a lattice model to throw light on a field theory, we have to take the zero lattice spacing
limit, a → 0, in a way such that observed quantities on the lattice go over to finite values in
the continuum. A necessary prerequisite for a continuum theory to exist is the presence of a
second-order phase transition in the coupling space of the theory. To have a finite-temperature
system, periodic boundary conditions are imposed in the Euclidean time direction with period
β( 1

T
); the passage to the continuum limit also requires that the temperatureT = 1

Nτ a
(Nτ is

the extent of the lattice in the temporal direction) remains finite. This further entails taking
the limit Nτ → ∞, along with the limita → 0. Again, the second-order phase transition
must persist in the limitNτ →∞ for us to define a finite-temperature field theory. In order to
achieve conditions allowing the study of thermodynamic properties, lattice studies are made
with a fixedNτ for large spatial lattices (Nσ � Nτ ), and then one tries to explore the behaviour
on lattices having largerNτ . In this paper, we take a step towards addressing these issues for
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theU(1) LGT. More precisely, we study theU(1) LGT on asymmetric lattices for which
Nσ � Nτ . Nσ is the lattice size in the spatial direction andNτ is the lattice size in the
temporal direction. FixingNτ allows a richer phase diagram for theU(1) LGT, and this phase
structure is relevant to define a finite-temperature field theory. That theU(1) LGT has a first-
order bulk transition might make it appear that there is no way to define a continuum field
theory in its phase diagram. However, there have been some recent claims for a second-order
phase transition in an extended version of theU(1) LGT with a monopole chemical potential
term [15]. The study of compactU(1) LGT using different lattice topologies [16] has also
shown that second-order transitions are possible in this model. Also, new phase transitions
can appear as a function ofNτ and, if these transitions are of second order, we are still left
with the possibility of defining non-trivial field theories, even at finite temperature, for the
U(1) LGT. There are several other reasons why we have embarked on a study of this simple
model. Firstly, the bulk properties of this model have been inferred from simulations on large
symmetric lattices (Nσ = Nτ ) in [4]. In these simulations, a phase transition is observed from
a confining phase to a deconfining phase. Although there was some controversy about the
order of the phase transition, later simulations on large lattices strongly suggested that the bulk
transition is of first order [5]. The mechanism of this bulk transition is quite well understood in
terms of monopole loop excitations [11]. These monopole loops are topological objects which
arise because of the periodicity properties of the action. The bulk system exists in two phases,
a confining phase in which the monopole currents condense causing complete Meissner effect,
and a deconfining phase in which the monopoles are too heavy to have any physical effect.
Since the monopoles can wind more effectively around a finite lattice, it is interesting to see
how they can alter the properties of the system. Recently [6], there have been some studies
which showed that these considerations could affect the order of the phase transition. Secondly,
the critical behaviour of lattice gauge theories at high temperatures can be understood from
analogous behaviour of three-dimensional spin models. The strong coupling analysis in [1]
shows that the partition function of theSU(2) LGT can be rewritten as a three-dimensional spin
model with a globalZ(2) symmetry. This symmetry arises because finite-temperature gauge
systems have an additional global symmetry arising from the periodic boundary conditions in
the temporal direction. For systems with a gauge symmetry groupG, this global symmetry
group consists of elements belonging to the centre of the gauge group. The deconfining
phase corresponds to the symmetry-broken phase and the confining phase corresponds to the
symmetric phase. Furthermore, as emphasized in [7], the order of the phase transition in four
dimensions is expected to be dictated by the universality classes present in three-dimensional
spin models having this global symmetry. These expectations have been borne out in studies
of theSU(2) [8] and theSU(3) LGTs [9] in which one observes a second-order Ising-like
and a first-orderZ(3)-like phase transition, respectively. A similar question can be raised in
the much simplerU(1) LGT. Unlike the non-AbelianSU(N) LGTs, which have a discrete
centre subgroup, (Z(N)), the AbelianU(1) LGT has a continuous centre subgroup which is
identical to the group itself. The role of theU(1) group on the confinement to deconfinement
transition is also of some interest from the point of view of the Abelian dominance hypothesis
for confinement which holds that aU(1) subgroup controls the non-perturbative dynamics
of non-Abelian gauge theories [17]. Finally, as theU(1) LGT already has a bulk phase
transition unlike theSU(2) andSU(3) LGTs, there is the question of the interplay between
this transition with the expected finite-temperature transition. The study of theU(1) LGT on
asymmetric lattices allows a richer phase structure than the one seen on symmetric lattices,
and it is an interesting issue to decide whether the new phase transitions are similar or any
different from the bulk phase transitions. This matter has been recently examined in the
context ofSU(2) LGTs using a mixed action; it was found in [10] that the bulk transition and
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the finite-temperature transition may coincide, making it difficult to distinguish one from the
other. A major difference between a bulk transition and a finite-temperature transition, which
can in principle distinguish the two transitions, is the movement of the transition point with the
temporal lattice size. For non-Abelian gauge theories, a physically relevant finite-temperature
transition should move towards the weak coupling region in a manner which is specified by the
beta function of an asymptotically free gauge theory. With these notions in mind, we would
like to embark on our present study of theU(1) LGT.

We will mainly consider the Wilson action [18] for theU(1) LGT, which is given by

S = β
∑
nµ>ν

cos(θ(nµν)). (1)

Theθ(nµν) are the usual oriented plaquette variables:

θ(nµν) = θ(nµ) + θ(n +µν)− θ(n + νµ)− θ(nν). (2)

The link variablesθ(nµ) can take values from−π toπ . As mentioned before, the properties of
this model at zero temperature are well known. There is a transition atβ ≈ 1.0 that is caused
by a decondensation of monopole currents (the bulk transition on a 164 lattices has been located
precisely in [21] and occurs atβ = 1.016). These monopole currents are defined on the dual
lattice by counting the number of Dirac strings entering or leaving a three-dimensional cube
on the original lattice [19]. The monopole density on a link(?l) of the dual lattice is defined
as

ρ(?l) = −1

2π

∑
p∈c

θ̄ (p). (3)

θ̄ (p) is extracted fromθ(p) by expressing it as

θ(p) = θ̄ (p) + 2πn(p) (4)

so that it takes values from−π toπ . In the above expression, the monopole current is defined
on the links?l of the dual lattice which are dual to the cubesc in the original lattice. As the
monopoles form closed loops on the dual lattice, it is more convenient to measure the total
perimeter density of the monopole current loops. The perimeter density is given by

ρ = 1

Nl

∑
l

ρ(l). (5)

Nl is the total number of links in the lattice. One observable which is of special relevance to
our analysis is the Wilson–Polyakov line (henceforth called the Wilson line), that is defined as

L(En) =
Nτ∏
n0=0

exp(iθ(En + n04̂4̂)). (6)

This observable is gauge invariant and has played a crucial role in studies of the deconfinement
transition inSU(N) LGTs. The centre symmetry that emerges at finite temperature is the
transformation which multiplies by a constant phase all the time-like links emanating from
some fixed time slice, namely

exp(iθ(En4̂))→ exp(iα) exp(iθ(En4̂)). (7)

Although the action is invariant under this transformation, the Wilson line transforms as

L(En)→ exp(iα)L(En). (8)

Hence, a non-zero expectation value of the Wilson line signals a spontaneous breakdown of
the centre symmetry. The Wilson line is given the usual physical interpretation by writing it
in the form

〈L(En)〉 = exp(−βFq(En)). (9)
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It measures the free energy(Fq(En)) of a static charge in a heat bath at a temperatureβ−1.
Hence, a non-zero value of〈L(En)〉 indicates deconfinement of static charges whereas a zero
value indicates confinement. We point out a subtlety in this representation, that has also
been noticed before in the context of theSU(2) LGT [13]. The left-hand side is in general a
complex quantity and hence cannot be given a free-energy interpretation. One way of avoiding
this problem is to work with the correlation function of two Wilson lines which is always a
non-negative quantity. Apart from the Wilson line, we have also studied the susceptibility of
the Wilson line which is defined as

χl = N3
σ (〈Es2〉 − 〈|Es|〉2). (10)

The ‘spin’ variableEs is constructed in equation (14). The peak in the Wilson line susceptibility
can be used to locate the phase transition.

A related observable that is also relevant is the plaquette susceptibility, defined as

χp = 6N3
σNτ

∑
p

(〈P 2〉 − 〈P 〉2). (11)

In the above equation,P is the average plaquette density in the system. The peak in the
plaquette susceptibility can also be used to locate the phase transition. According to the finite
size scaling theory, the susceptibility of an observable, which blows up at a phase transition
point in the infinite volume limit, is expected to scale with the system size as

χcrp = Nα. (12)

HereN is the size of the system. For a first-order transition,α equalsd, the dimensionality of
the system; for a second-order transition,α equalsγ /ν, whereγ andν are the exponents for
the susceptibility and the correlation length near the transition, which are given by

χ = (T − Tc)−γ ξ = (T − Tc)−ν . (13)

We will use the above observables to study the phase transition in the Abelian LGT.
This paper is organized as follows. Section 2 contains the results of our numerical

investigations of this model. In section 3 we make some comments on the mixed actionU(1)
LGT and compare and contrast it with that of the of mixed actionSU(2) LGT. In section 4 we
summarize our conclusions.

2. Numerical results

In this section we present our numerical analysis of the model. The system is mimicked at
finite temperature by working on an asymmetric lattice (Nσ � Nτ ) with periodic boundary
conditions in the Euclidean time direction. We first briefly describe the numerical procedure
that we adopted to obtain our results. The Metropolis algorithm was used to generate successive
Monte Carlo configurations. A new link variableθ ′ was generated from the old oneθ by adding
a number randomly chosen in the range(−α, α) with uniform probability. The value ofα was
tuned to get an acceptance of 50%. Care was taken so that the link variables remained in
the range(−π, π). Simulations were performed on temporal lattices withNτ = 2, 3, 4. The
observables that were measured are: the monopole density, the Wilson line, the plaquette
density, the Wilson line susceptibility, and the plaquette susceptibility. As the Wilson line is
complex (it is a phase with modulus equal to one), we measure its real and imaginary parts
separately. If we simply measure the average value of the real or the imaginary parts, the result
will always be equal to zero because phase transitions are impossible on finite system as the
tunnelling between the degenerate states always restores the symmetry. A rigorous way of
studying symmetry breaking is to study the average value of the Wilson line in the presence
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of a small symmetry breaking external field, and then take the limit of zero field after taking
the large volume limit. A simpler prescription, that is often employed in studying continuous
spin models, is to study the root mean square value of the order parameter, and this is how we
will proceed. The observable that we have measured as an indicator of spontaneous symmetry
breaking is

√〈s〉; s is defined as

s = ReL2 + ImL2. (14)

Here ReL and ImL refer to the average of the real and imaginary parts of the Wilson line
respectively. A simple strong coupling analysis (valid forβ small) yields the following effective
action for the Wilson lines:

Seff = 2

(
β

2

)Nτ ∑
EnEn′

cos(θ(En)− θ(En′)). (15)

Nτ is the temporal extent of the lattice and theθ(En) variables are the sums of the phases of all
the time-like links at the spatial pointEn. This is the action for the three-dimensional planar
model which is known to have an order–disorder transition atβcr = 0.454. For anNτ = 2
lattice, this gives the critical coupling to be approximately 0.95. Thus we expect our lattice
model to have a phase transition atβ ≈ 0.9. This strong coupling argument is valid only if the
phase transition takes place in the strong coupling regime. Nevertheless, the strong coupling
approximation provides a simple way of seeing how a three-dimensional spin model emerges
from the four-dimensional gauge theory.

A more direct way of seeing the appearance of an effective three-dimensional spin model,
without using a strong coupling approximation, is to use the dual representation of the four-
dimensionalU(1) LGT. The dual representation is given by

Z =
∫

Dφ
∑
mµ(r)

exp− 1

2β

∑
nµν

(∂µφν − ∂νφµ)2 + 2π i
∑
n

mµ(n)φµ(n). (16)

This describes a gas of closed monopole loops (mµ(r)) which interact by a four-dimensional
Coulomb potential. This system has a phase transition which takes place as a result of the
competition between the energy and the entropy of the monopole loops. The fieldsφµ(r) can
be integrated out to give

Z =
∑
mµ(r)

exp

(
− 2π2β

∑
nn′
mµ(n)Gµν(n− n′)mν(n′)

)
. (17)

At non-zero temperatures, the time direction is finite and the Green function satisfies periodic
boundary conditions. The four-dimensional Green function can be rewritten as

Gµν(r − r ′) ≈ T G̃µν(Er − Er ′). (18)

HereG̃µν(Er−Er ′) is the three-dimensional Green function. As the gas is finite in one direction,
one again has a gas of monopole loops which now effectively interact with a three-dimensional
Coulomb interaction. From the point of view of the effective three-dimensional planar model,
the monopole loops behave like vortex lines. The entropy of large loops in three dimensions
is smaller than in the four-dimensional case and this shifts the transition. The order of the
transition cannot be deduced from these energy arguments and has to be determined by doing
a finite size scaling analysis. We show in figure 1 the variation of

√〈s〉 with β on a 63 2
lattice. The observable

√〈s(En)〉 is close to zero at smallβ and rises smoothly across the
critical value. TheU(1)monopole density variation is shown in figure 2. There is a fall in the
monopole density across the transition which coincides with the rise in the order parameter.
In both cases, the variation is quite gradual and we would suspect that we are in the vicinity
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Figure 1. Variation of the order parameter on a 63 2 lattice.

Figure 2. Monopole density on a 63 2 lattice.

of a second-order transition. This is further suggested by the gradual rise in the plaquette
expectation value (see figure 3). To determine the order of the transition, we perform a finite
size scaling analysis of the susceptibility of the order parameter(χl). We have done the finite
size scaling study on lattices of temporal extentNτ = 3 and 4. For this method to work, it
is crucial that we are very close to the pseudo-critical point corresponding to the lattice that
we are working on. The histogram method is used to extrapolate observables from one value
to a nearby neighbouring value. The pseudo-critical point is located in this way by looking
at the peak in the susceptibility of the order parameter. The behaviour of the susceptibility
near the transition on 6, 9, 12 and 16 sized spatial lattices (keeping the temporal extent fixed
atNτ = 3) is shown in figure 4. These results were obtained after 200 000 measurements
onNσ = 6, 9 lattices while 150 000 measurements were made on theNσ = 12 lattice and
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Figure 3. Plaquette expectation value on a 63 2 lattice.

Figure 4. Susceptibility of the order parameter near the transition on 6, 9, 12 and 16 size spatial
lattices.

100 000 measurements were made on theNσ = 16 lattice. All the measurements were made
after ignoring the first 50 000 Monte Carlo iterations. The errors were estimated by binning
the data. The finite size scaling theory predicts

χ ≈ Nd
σ (19)
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Figure 5. A fit of the maximum value of the logarithm of the susceptibility to lnN .

for a first-order phase transition;d being the effective dimension of the system (in this case
d = 3); for a second-order transition, the prediction is

χ ≈ N
γ

ν
σ . (20)

γ andν are the exponents in equation (13). The peaks in the susceptiblity were fit to anNα
σ

dependence and a good fit is obtained (figure 5). From our fit we determineγ /ν to be 1.95 with
an error of 0.13. For the three-dimensional planar model, which is the effective spin model
with which we would like to compare our results, the ratioγ /ν = 1.97.

We have performed another test for the order of the phase transition by studying the
distribution of the monopole loops. Since the monopole loops, which now behave as vortex
lines, are responsible for driving the phase transition, they should also exhibit a scaling
behaviour at the point where the transition becomes second order. At the point of the second-
order phase transition, there are fluctuations on all length scales and the monopole loops come
in all sizes and shapes. At the transition point, the monopole loop distribution function,p(l),
should scale as

p(l) = 1

lτ
(21)

with an exponentτ which is independent of the volume. The functionp(l) is defined as the
probability of finding a loop of lengthl at a site. In order to definep(l)we have to decide what
we are to do when loops intersect, which is the generic case. Whenever a loop intersects, we
trace the smallest possible path of the loop that returns to its starting point. In this way, the
loops that we measure cannot be broken down to any smaller loops and they are essentially
non-intersecting. We have calculatedp(l) for various lattices at their pseudo-critical points
and we find thatp(l) can be nicely fitted to the above form. The value ofτ that we get (using
data on aNσ = 16 lattice) is 2.27± 0.003. Unfortunately, we are not able to compare it with
a theoretical calculation. Nevertheless, it is interesting that the topological excitations, in this
case the monopoles, exhibit a scaling dependence at the transition point. Figure 6 showsp(l)

for loops of lengthl up to 14 on different lattices. The plot shows that they fall on a straight
line independent of the volume. The slight distortions for theNσ = 6 lattice are due to finite
size corrections when the loop length is larger than the lattice size. A study of larger loop
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Figure 6. Scaling of the monopole loop distribution functionp(l) with loop length(l). The graph
shows the logarithm ofp(l) as a function of the logarithm ofl.

lengths can also be made but the algorithm that we have used to count the loops slows down
when the loop lengths become very large, and so we have not studied larger loops. Away from
the critical point,p(l) either falls rapidly to zero (in the deconfining phase) or remains constant
(in the confining phase). A similar study of the monopole loop distribution function was made
in [20] for the Abelian projected monopoles in theSU(2) theory near the continuum limit.

Now we say a few words on the location of this transition as compared with the location
of the bulk transition. The transition point (which is located by looking at the peak in the
susceptibility of the order parameter) shifts as a function ofNτ as

Nτ 2 3 4
βcr 0.9297(3) 1.012(2) 1.032(2).

The above critical values are those obtained onNσ of 16, 16 and 12 respectively. The bulk
transition on a 164 lattice was located atβ = 1.016 in [5]. Since the bulk transition is known
to be of first order [5], and the transition that we have observed is of second order, we are
observing a change in the order of the phase transition as a function ofNτ . The nature of the
transition that we have observed can be further studied by monitoring the behaviour of the
plaquette susceptibility which was defined in equation (11). The behaviour of the plaquette
susceptibility for a 63 3 and a 123 3 lattice is shown in figure 7. This graph clearly shows that
the plaquette susceptibility does not scale with the four-dimensional volume as is expected of
a first-order bulk transition.

The above observations show that the transition that we have observed (on anNτ = 3
lattice) is a deconfinement transition whose scaling behaviour is quite distinct from that of
the bulk transition. The order of the transition as seen by the Wilson line is a second-order
transition with the ratioγ /ν which has approximately the same value as that in the three-
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Figure 7. The scaling of the plaquette susceptibility near the phase transition. This is shown on
63 3 and 123 3 lattices.

dimensional planar model. Since the plaquette susceptibility does not scale as a first-order
bulk transition, we are not observing the bulk transition at the point where we are observing
the finite-temperature transition. The finite size scaling analysis can be repeated on anNτ = 4
lattice and the peak in the susceptibility of the order parameter as a function of volume is
shown in figure 8. This scaling again suggests a second-order transition with a value forγ /ν

which is again in good agreement with that of the three-dimensional planar model.
We now place our results in the context of some recent developments. The studies in [10]

considered the finite-temperature properties of the mixed actionSU(2) LGT which is defined
by

S =
(
βf

2

)∑
p

trf U(p) +

(
βa

3

)∑
p

tra U(p). (22)

This model is known to have lines of first-order bulk transitions in theβf , βa plane [12]. It
was found in [10] that the deconfinement transition of the pureSU(2) LGT, which is of second
order, continues into theβf , βa plane and joins the line of first-order bulk transitions. Based
on this observation in [10], a possibility was considered where there is either only a bulk or a
finite-temperature transition in theSU(2) LGT. On the other hand, there may also be a very
small but finite separation between the two transitions which cannot be resolved on the lattice
sizes used in the simulations. In our case, the relevant coupling space is theβ, N−1

τ plane.
Our simulations of theU(1) LGT show that there is a deconfinement transition which is of
second order and that the plaquette susceptibility does not scale as a first-order bulk transition
at the transition point. The transition is shown to shift from its bulk value as a function ofNτ
but this shift is very small, though still discernible. We also place our results in the light of
the expectations of Svetitsky and Yaffe [7]. According to their general arguments, the critical
behaviour of theU(1) LGT at finite temperature is expected to fall in the same universality
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Figure 8. A finite size study of the susceptibility of the order parameter on anNτ = 4 lattice.

class as that of the three-dimensional planar model, which is known to have a second-order
phase transition. Our finite size scaling analysis on theNτ = 3 lattice definitely rules out a
first-order phase transition and indicates that the ratioγ /ν has approximately the same value
as in the three-dimensional planar model.

We conclude this section with a proposal for the phase diagram of theU(1) LGT as
a function ofNτ . In the bulk system (which corresponds to taking the limitNσ = Nτ and
Nσ →∞), there is the monopole-driven phase transition. On asymmetric lattices of very small
temporal extent, we might expect the bulk system to look like a three-dimensional system. On
asymmetric lattices of very large temporal extent, we expect to see the four-dimensional bulk
transition. Lattices of intermediate temporal extent will exhibit a complicated crossover from a
four-dimensional system to a three-dimensional system. Our simulations on anNτ = 3 lattice
show that there is a second-order phase transition which has the same value ofγ /ν as in the
three-dimensional planar model. This transition is a deconfinement transition as is indicated
by the behaviour of the fundamental Wilson line. However, there is no bulk transition (as in
the four-dimensional theory) on this lattice. Whether the transitions that have been observed in
asymmetric lattices lead to a finite-temperature continuum limit will depend on their behaviour
on lattices with largerNτ .

3. Mixed actionU (1) LGT

Since lattice actions are, any way, not unique, we can always construct more complicated-
looking lattice actions and examine their properties. A simple generalization of the action in
section 1 is the mixed action which is defined by

S = β1

∑
p

cos(θ(p)) + β2

∑
p

cos(2θ(p)). (23)
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The two pieces of the above action are different from each other only in so far as their periodicity
properties are concerned. In the naive continuum limit,a → 0, the second term is like an
irrelevant coupling and is not expected to change the long-distance properties of the theory.
The zero temperature properties of this action have been studied in [14] and it has a rich
phase structure of first- and second-order transitions. This system can also be studied at finite
temperature just as we did for theβ2 = 0 theory. Again, from a simple strong coupling analysis
of the mixed actionU(1) LGT, we get an effective theory of spins which is that of the mixed
planar model:

Seff = 2

(
β1

2

)Nτ ∑
EnEn′

cos(θ(En)− θ(En′)) + 2

(
β2

2

)Nτ ∑
EnEn′

cos(2θ(En)− 2θ(En′)). (24)

Puttingβ1 = 0 gives a three-dimensional planar model of spins, the only difference being in
the periodicity properties of the action. Hence, the finite-temperature properties of the mixed
model in theβ1 = 0 limit should be identical to those in theβ2 = 0 limit. In particular,
the previous statements regarding the order of the transition will also be true in this limit. A
surprising feature of the mixed planar model is that it posesses a region of first-order phase
transitions for some values ofβ2 [23]. This implies a similar region of first-order transitions in
the mixedU(1) LGT for a segment ofβ2 values. The order of the finite-temperature transition
changing in the direction of an irrelevant coupling has also been discussed in the context of
the mixed actionSU(2) LGT [10].

From the above analysis, it is clear that there are many similarities between theU(1)
LGT and the mixed actionSU(2) LGT. We now show that the similarity also extends to
the construction of the relevant order parameters in the two models.The mixed actionSU(2)
LGT [12] is defined by

S = βf

2

∑
p

trf U(p) +
βa

3

∑
p

tra U(p). (25)

trf and tra denote the traces in the fundamental and the adjoint representations, respectively.
The limit βa = 0 describes anSU(2) LGT and the limitβf = 0 describes anSO(3) LGT.
The order parameter of the finite-temperature transition in theSU(2) LGT is the Wilson line
in the fundamental representation which is defined as

Lf (En) = Trf
Nτ∏
n0=0

U(En + n04̂4̂). (26)

In theSO(3) LGT (βf = 0), this observable is identically zero because of the followinglocal

Z(2) symmetry:

U(En4̂)→ Z(En)U(En4̂). (27)

Z(n) can take the values +1 or−1 at any site. For theSO(3) LGT, the appropriate order
parameter is the Wilson line in the adjoint representation,

La(En) = Tra
Nτ∏
n0=0

U(En + n04̂4̂) (28)

which is invariant under the localZ(2) transformation in equation (27). For the groupSU(2),
Lf andLa are related by

La(En) = Lf (En)2 − 1.0. (29)
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In the mixed actionU(1) LGT we are faced with a similar problem in defining the order
parameter for theβ1 = 0 theory. In this limit, the Wilson line defined in section 1 is identically
zero because of the following local symmetry:

exp(iθ(En4̂))→ Z(En) exp(iθ(En4̂)). (30)

The correct order parameter to use in this limit is

L2(En) =
Nτ∏
n0=0

exp(i2θ(En + n04̂4̂)) (31)

which is analogous to the Wilson line in the adjoint representation ofSU(2). The relationship
betweenL2(En) andL(En) isL2(En) = L(En)2.

Though there are similarities at the formal level, and in the phase structure of the mixed
action Abelian and mixed action non-Abelian theories, there are, of course, many important
differences between the two systems. An important difference is that, unlike in the Abelian
LGT, the critical coupling in theSU(2) LGT is expected to scale withNτ according to the
beta function of the Yang–Mills theory. There is strong evidence for this asymptotic scaling
from simulations on very large temporal lattices [22].

The purpose of this section was only to indicate that many of the issues such as the mixing of
the bulk and finite-temperature transitions which have been raised recently can all be explored
in the much simpler mixed action Abelian LGT. Also, because the physical properties of this
model are well understood in terms of the monopole excitations, this model may prove useful
in investigating these issues.

4. Conclusions

In this paper we studied theU(1) LGT using the Wilson line as the order parameter. We have
found that there is a transition into a deconfining phase at large coupling which is driven by the
decondensation of monopole loops. The monopole loops, however, effectively interact like
the vortices in the three-dimensional planar model. The deconfining phase breaks the global
U(1) symmetry present in the theory. A finite size scaling analysis of the susceptibility of
the Wilson line indicates that the transition is of second order (on lattices of temporal size
Nτ = 3, 4) with a ratio forγ /ν which has almost the same value as in the three-dimensional
planar model. A scaling form of the distribution of the monopole loops was also established at
the point of the second-order phase transition. This transition was also examined by studying
the plaquette susceptibility at the transition point. The plaquette susceptibility (on aNτ = 3
lattice) does not scale as is expected of a first-order bulk transition. There is also a small shift
in the transition point from the bulk value. We have also pointed out that many of the recent
issues concerning the mixing of the bulk and finite-temperature transitions can also be raised
in the Abelian LGT. Since the Abelian theories are well understood in terms of their monopole
excitations, some of these issues can perhaps be clarified.
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